目的 茅莓根与同科属其他物种存在混用现象,为保证安全用药,本实验利用ITS2序列对茅莓根及其混伪品进行鉴定研究。方法 提取茅莓及其混伪品的DNA,经PCR扩增后测序,通过CodonCode Aligner V3.7.1对测序序列进行质量分析和拼接,基于MEGA5.1中的K2P模型计算茅莓根及其混伪品的种内、种间遗传距离并构建系统聚类树。结果 茅莓ITS2序列比对后长度为212 bp,种内最大K2P遗传距离为0.014,存在3个变异位点,平均GC含量为57.42%。基于ITS2序列构建NJ树,茅莓及其混伪品能够表现出良好的单系性,均能相互明显区分。从药材市场购买的23份茅莓根样品,DNA提取和扩增成功率为100%,采用NJ树分析,其中13份药材样品与茅莓聚为一支,其余10份属于其他物种。结论 茅莓及其混伪品鉴定难题可用ITS2条形码技术解决。
Abstract
OBJECTIVE To identify Rubi Parvifolii Radix from its adulterants using ITS2 sequence.METHODS All the DNA of Rubi Parvifolii Radix and its adulterants were extracted. All the sequences were assembled using the CondonCode Aligner V3.7.1. The Kimura 2-parameter(K2P) genetic distances and the neighbor joining(NJ) phylogenetic tree were calculated by using MEGA5.1.RESULTS The ITS2 sequences were succesfully amplified and sequenced.The length of ITS2 sequences of Rubus parvifolius was 212 bp, and the average GC content was 57.42%. Among 20 ITS2 sequences of R. parvifolius, three transversions were detected at site 66,118 and 177. The maximum intra-specific K2P distance of R. parvifolius was 0.014, lower than the minimum inter-specific K2P distances of adulterants, except for R. coreanus. Additionally, the ITS2 sequences of all the polytypic species were separated into pairs of divergent clusters in the NJ tree and R. parvifolius can be distinguished clearly from its adulterants. The ITS2 sequences of 23 samples of Rubi Parvifolii Radix collected from different herb markets, were successfully amplified. The NJ tree analysis indicated that 13 samples clustered with R. parvifolius, while the other 10 samples were clustered into other divergent clusters. CONCLUSION ITS2 Sequence can be used as DNA barcode to correctly identify Rubi Parvifolii Radix from its adulterant.
关键词
茅莓根 /
ITS2 /
分子鉴定 /
混伪品
{{custom_keyword}} /
Key words
Rubi Parvifolii Radix /
ITS2 /
molecular identification /
adulterant
{{custom_keyword}} /
中图分类号:
R282
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Standard of Traditional Chinese Medical of Guangdong. (Vol Ⅱ)(广东中药材标准第二册)[S]. 2011:200-202.
[2] MEI Q X, ZHONG X W, FU L W, et al. Inhibitory action of different traditional Chinese drug on Human nasopharyngeal carcinoma cells CNE-2 in vitro[J]. J China Pharm(中国药房),2009,20(15):1130-1131.
[3] MEI Q X, FAN W C, GAO Y Q, et al. Inhibiting effect of 12 Guangdong native heat-clearing herbs on EB virus antigen expression and their cytotoxicity[J]. Med Plant, 2014, 5(1): 47-49, 54.
[4] HU Y, MEI Q X. The textual research and modern research overview on the radix Rubu sparvifolius[J]. Lishizhen Med Mater Med Reser(时珍国医国药),2013,24(11): 2764-2766.
[5] MEI Q X. Guangdong DichanYaocaiYanjiu(广东地产药材研究)[M]. Guangzhou: Guangdong Science and Technology Press, 2011: 579.
[6] MILLER S E. DNA Barcoding and the renaissance of taxonomy[J]. Proc Nat Acad Sci, 2007, 104(12): 4775-4776.
[7] SCHINDEL D E, MILLER S E. DNA Barcoding a useful tool for taxonomists[J]. Nature, 2005, 435(7038): 17.
[8] LI X W, YANG Y, HENRY R J, et al. Plant DNA Barcoding: From gene to genome[J]. Biol Rev, 2015,90(1):157-166.
[9] CHEN S L, YAO H, HAN J P, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species[J]. PLoS One, 2010, 5(1): e8613.
[10] HAN J P, ZHU Y J, CHEN X C, et al. The short ITS2 sequence serves as an efficient taxonomic sequence tag in comparison with the full-length ITS[J]. Bio Med Res Int, 2013, Doi:10.1155/2013/741476.
[11] WOLF M, CHEN S L, SONG J Y, et al. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences-a proof of concept[J]. PLoS One, 2013, 8(6): e66726.
[12] SONG J Y, CHEN S L, LI D Z, et al. Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA [J]. PLoS One, 2012, 7(8): e43971.
[13] CHEN S L, PANG X H, YAO H, et al. Identification system and perspective for DNA barcoding traditional Chinese materia medica[J]. Mod Tradit Chin Med Mater Med World Sci Tech(世界科学技术:中医药现代化), 2012, 13(5): 747-754.
[14] XIN T Y,YAO H, GAO H, et al. Super food Lycium barbarum (Solanaceae) traceability via an internal transcribed spacer 2 barcode[J]. Food Res Int, 2013, 54(2): 1699-1704.
[15] XIN T Y, YAOH,LUO K, etal. Stability and accuracy of the identification of Notopterygii Rhizoma et Radix using the ITS/ITS2 barcodes[J]. Acta Pharm Sin(药学学报), 2014,47(8):1098-1105.
[16] PANG X H, SONG J Y, ZHU Y J, et al. Using DNA barcoding to identify species within Euphorbiaceae [J]. Planta Med, 2010, 76(15): 1784-1786.
[17] CHEN S L. Standard Dna Barcodes of Chinese Materia Medica in Chinese Pharmacopoeia(中国药典中药材DNA条形码标准序列)[M]. Beijing: Science Press Ltd, 2015: 6, 18.
[18] CHEN S L, GUO B L, ZHANG G J, et al. Advances of studies on new technology and method for identifying traditional Chinese medicinal materials [J]. China J Chin Mater Med(中国中药杂志), 2012,37(8):1043-1054.
[19] HAN J P, SONG J Y,YAO H, et al. Comparison of DNA barcodersin identifying medicinal materials[J]. China J Chin Mater Med(中国中药杂志), 2012, 37(8): 1056-1061.
[20] LUO K, MA P, YAO H, et al. Study on DNA extraction method for Chinese herbs[J]. Mod Tradit Chin Med Mater Med World Sci Tech(世界科学技术:中医药现代化), 2012, 14(2): 1433-1439.
[21] LIAO J, LIANG Z B, ZHANG L, et al. DNA Barcoding of common medicinal snakes in China[J]. Chin Pharm J(中国药学杂志),2013,48(15): 1255-1260.
[22] XIN T Y, LI X J, YAO H, et al, Survey of commercial Rhodiola products revealed species diversity and potential safety issues[J]. Scientific Reports, 2015,5. 8337. doi:10. 1038/srep08337.
[23] XIN T Y, ZHAO S, SONG J Y. Identification of commercial Lycii cortex and its Adulterants using ITS2 sequence as DNA Barcode[J]. Chin Pharm J(中国药学杂志), 2013,48(15):1255-1260.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}